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Regulation by proteolysis: developmental switches 
Susan Gottesman 

The energy-dependent proteases originally defined in 

Escherichia co/i have proven to have particularly important 

roles in bacterial developmental systems, including sporulation 

in Bacillus subtik and cell cycle in Caulobacter. Degradation 

of key regulatory proteins participates, with regulation of 

synthesis and activity of the regulators, to ensure tight control 

and, where required, irreversible commitment of the cell to 

specific clevelopmental pathways. 
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Introduction 
Energy-dependent proteases help rid the cell of abnormal 
and misfolded proteins and play key roles in many regula- 
tory cascades. In addition, the ATPase components of 
some of these proteases or their close relatives serve as 
chaperones. Our understanding of the mechanism of 
action of these proteases, based primarily but not exclu- 
sively on studies with the Eschetichia co/i prototypes, has 
continued to expand. At the same time, homologs of the 
E. cu.& enzymes in many other organisms have been iden- 
tified and found to have critical regulatory roles, 
particularly in developmental pathways. This review 
briefly describes the energy-dependent proteases, 
approaches to studying their in vze/o targets, new regulato- 
ry cascades in which they have been implicated. 

The basic machinery: processive, 
selective proteases 
In prokaryotes, on the order of six energy-dependent pro- 
teases must handle the degradation of a large variety of 
cellular proteins. IJnlike eukaryotes, in which multiple 
ubiquitin tagging systems funnel multiple substrates into 
one cytoplasmic protease the 26s protease, substrate selec- 
tion in prokaryotes must operate at the level of the protease 
itself. Energy-dependent proteases are generally large 
oligomeric assemblies. In those in which structure has been 
examined, the proteolytic sites are sequestered in a cham- 
ber, the entry to which is too small for most folded proteins 
[1,2]. Entry is believed to be mediated via the regulatory 
ATPase domains or subunits; it is these regulatory ATPases 
that also determine substrate specificity. The ATPase sub- 
units from otherwise distinct proteases share sequence 
similarities that may imply similar mechanisms of action [3]. 
Because substrate recognition is by the regulatory ATPases, 
the substrate characteristics that lead to degradation are 
independent of any sequence requirements for peptide 

bond cleavage. Once a protein is recognized and bound 
properly by the regulatory ATPase domain, degradation of 
the whole polypeptide chain proceeds processively, with 
cleavage occurring every S-10 amino acids. 

Four ATP-dependent protease families have been recog- 
nized in E. co/i. 

Lon 
Lon (also called La) is encoded by a single gene with a ser- 
ine active site near the carboxyl terminus and an ATPase 
domain in the middle [4-lo]. Recent studies of the protein 
from yeast mitochondria suggest that these domains can be 
expressed from separate polypeptides and still cooperate 
to restore full Lon function [l lo*]. 

ClpAP and ClpXP 
ClpP, the proteolytic core of the ClpAP protease, has its ser- 
ine active sites arrayed within a cavity formed from two 
seven-membered rings of ClpP [l]. The regulatory ATPase 
ring consists of six ClpA subunits [ 121. ClpA can function as 
a chaperone in vitro, binding substrate in the presence of 
nucleotide and releasing it in an activated state when ATP 
is hydrolyzed; only a single round of binding and release is 
necessary for activation [13,14]. When ClpP is present but 
proteolytically inactive, substrates are translocated from the 
ATPase to the ClpP chamber following ATP hydrolysis 
[15”]. Parallel results observed in viva for Lon protease 
(sequestration of substrates in the absence of active prote- 
olysis) suggests that this may be a common feature of these 
two protease families (L van Melderen, MR Mauriz, 
S Gottesman, unpublished data). 

ClpXP consists of an ATPase ring, ClpX, associated with 
the ClpP rings; the substrate specificity of ClpXP is differ- 
ent from that of ClpAP [16-181. ClpX can also act as a 
chaperone on its own [19-211. 

ClpYQ/HslUV 
This protease is a hybrid, in which a ClpX-like ATPase 
(known as ClpY or HslU) associates with a protease sub- 
unit, ClpQ or HslV. The protease subunit has a threonine 
active site and sequence similarities to the eukaryotic pro- 
teasome core subunits [2,22]. Recent studies suggest that 
this protease at least partially overlaps Lon in substrate 
specificity ([‘23,24]; W-F Wu, YN Zhou, S Gottesman, 
unpublished data), emphasizing that the substrate speci- 
ficity is not a characteristic of a particular protease family. 

FtsH/HflB 
Another single subunit protease, FtsH (also known as 
Hfl B), is a zinc metalloprotease with two membrane 
spanning regions. The active site as well as the ATPase 
domain, a member of the AAA family of ATPases, reside 



in the cytoplasm (recently reviewed in [‘ZS]). FtsH is the 
only essential member of the energy-dependent proteas- 
es in E. cali, although in Bacillus subbilis, for instance, it is 
not essential [26,27’]. FtsH has also been observed to 
form rings in EM studies [ZS]. 

How are substrates recognized? 
It is not yet possible to examine a protein sequence and 
make even an educated guess as to whether it will be unsta- 
ble and, if so, what protease will degrade it. For known 
unstable proteins, studies of the protease recognition signals 
suggest that the ends of proteins are frequently implicated 
in protease recognition. Whether the end per se is a recogni- 
tion motif (implying that the NH, or COOH are part of what 
is recognized) or whether recognition motifs have evolved to 
be near ends because the ends are more likely to be or to 
become accessible may vary with the particular case. 

Proteins engineered to have certain abnormal amino-ter- 
minal amino acids in oiao are rapidly degraded (the N-end 
rule); degradation is dependent upon ClpAP [29-31). It is 
not yet clear whether this is biologically relevant in bacte- 
ria. A carboxy-terminal tagging system leading to 
degradation of incomplete proteins is dependent upon a 
‘mobile messenger RNA’ called 1OSa RNA or tmRNA, 
encoded by the ssrA gene of E. cofi. This RNA serves as a 
template for the co-translational addition of 11 amino acids 
to the carboxyl terminus of proteins with truncated mes- 
senger RN,4s [32]; the carboxy-terminal addition allows 
degradation by ClpAP, ClpXP, and, in some cases, FtsH 
f33’,34’]. Thus ClpAP recognizes both the carboxyl termi- 
nus and the amino terminus of proteins under different 
circumstances. The degree of redundancy among these 
proteases varies with particular substrates, and presumably 
depends upon the structure of regions further into the 
body of the protein. A periplasmic protease, Tsp, also rec- 
ognizes the same carboxy-terminal sequence [32]. In other 
cases, the carboxyl terminus is also the site of recognition, 
although the tagging sequence is not present. Recognition 
of the replication protein of bacteriophage Mu, A protein, 
by ClpX depends upon the last eight amino acids of MuA 
[ZO]. Specificity for the MuA sequence is at least in part 
encoded in the carboxy-termina1 region of CipX [35]. 
Degradation of a number of Cazdobacter proteins, including 
a component of the flagellar motor, a chemoreceptor pro- 
tein and CtrA, a regulatory protein, depends upon the 
carboxyl terminus of these proteins [36--381. 

Degradation is also significantly modulated by the interac- 
tion of the substrate with other protein components, both to 
stimulate degradation, and, in other cases, to sequester sub- 
strates in protected complexes. As a result, sequences 
identified as being involved in substrate recognition may in 
fact be those modulating interaction with critical proteins. 
RpoS (&), a sigma factor degraded under certain conditions 
by ClpXP, must have at least some of the essential 
sequences for recognition in the middle of the protein, 
because fusions that delete the carboxyl terminus (and add 
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on LacZ to make translational fusion proteins) are still 
degraded with the same pattern as the parent protein; 
deleting a bit further into the protein, however, leads to a 
stable protein 239,401. RpoS degradation, however, requires 
an auxiliary protein, RssB/SprE 141,421. Therefore, it is 
unclear if the sequences within RpoS are those responsible 
for recognition by RssB, recognition by the protease, or 
both. Similarly, degradation of the heat-shock sigma factor, 
RpoH or 0~2, is dependent upon FtsH but is significantly 
affected by DnaJ, DnaK, and GrpE [43-46]. To complicate 
matters further, the activity of 0~2 is also affected by DnaK 
and DnaJ, in the absence of the FtsH protease [47’]. 
Degradation of the wild-type Mu repressor is stimulated by 
the presence of a mutant repressor (Mu vir) [48]. 

Regulatory roles for proteolysis 
In many cases, proteolysis in regulatory circuits is not itself 
regulated. The synthesis of the substrate is presumably 
changed with conditions, and constant rapid degradation 
ensures a tight coupling between synthesis and activity. In 
other cases, proteolysis changes with environmental or 
developmental cues. As noted above, regulation of the 
degradation of a given protein may depend on interactions 
with other proteins. Degradation of UmuD’, a component of 
the error-prone repair mutagenesis system in E. co&, 
depends on the availability of a second component of the 
system, UmuC and the IJmuD precursor, as well as the 
activity of the UmuD self-cleavage reaction (dependent 
upon RecA and DNA damage cues) 1491. MuA recognition 
by ClpX is affected by the interaction of MuA and MuB 
1201. These protein-protein interactions are, not surprising- 
ly5 substrate specific. The requirement of RssB for RpoS 
degradation is also substrate specific [SO’]: the regulatory 
step may be activation of RssB by phosphorylation [51]. It 
seems likely that most of the regulated proteolysis observed 
in both prokaryotes and eukaryotes will reflect substrate- 
specific protein interactions and/or modi~cations, rather 
than major changes in protease availability or activity. It is 
clear, however, that there are some exceptions to this. 
Bacteriophage T4 shuts off proteolysis by Lon and other 
proteases; PinA, a T4 protein, acts as an inhibitor of the 
ATPase of Lon [52,53]. Bacteriophage lambda RexB protein 
inhibits ClpP, apparently helping to save lambda lysogens 
from killing their hosts after certain types of stresses [54’]. 

Protease involvement in regulatory pathways has been rec- 
ognized either as a result of observable phenotypes of 
protease mutants or by the recognition of specific unstable 
proteins and the subsequent identification of the relevant 
protease. The sequencing of bacterial genomes coupled 
with the recognition of conserved families of proteases has 
simplified analysis via both of these pathways. 
Nonetheless, we still know the full story in very few cases. 

Phenotypes due to mutations in the protease 
Not all phenotypes associated with mutations in the pro- 
teases reflect regulatory proteolysis. Because some of the 
energy-dependent proteases are involved in dealing with 
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abnormal proteins, and some Clp ATPases are also acting 
as chaperones, it is not surprising that mutations in these 
proteases sometime yield strains that are sensitive to 
stress, in particular high temperature [SS-581. In addi- 
tion, a mutation in a given protease frequently will lead 
to stabilization of more than one substrate, complicating 
analysis. The clpP mutation in B. subtilis is defective in 
high temperature growth, sporulation, competence 
development, and motility. A mutation in one likely tar- 
get, MecA, suppresses some but not all phenotypes, and 
is not fully suppressed for those, suggesting that other 
substrates must exist [.59”]. 

Most instructive in defining new roles for proteolysis are 
mutations isolated in a search for a given phenotype, which 
prove to be in a protease gene. For instance, mutations in 
clpP were found in a search for mutations that increased 
transcription of a cell-surface protein involved in Yersinia 
enterocdizica pathogenesis [60], suggesting the involvement 
of an unstable transcriptional regulator in this system. A 
number of other processes newly found to be modulated 
by protea.se mutants are reviewed below. 

Swarming and biofilms 

Mutations selected in Vibrio parahaemolybiczs for their 
inability to down-regulate swarmer genes, normally 
expressed only when the bacteria are growing on solid sur- 
faces, dming liquid growth have proven to be in the lonS 
gene, encoding a Lon homolog [61]. In Pseudomonas flue- 
resce?zs, mutants that are defective in biofilm formation 
include strains with insertions in c&P [62]. 

Restriction-modification systems 
Introduction of new restriction systems into E. coli results 
in delayed expression of the restriction system, while mod- 
ification is expressed immediately. Mutations in clpX or 
cipP lead to a significant lowering in the efficiency of 
acquiring the new system, suggesting that degradation of a 
component specific to restriction but not modification may 
be important [63]. The fact that a c/pX mutation has a more 
significant phenotype than a clpP mutation might suggest 
that some ‘chaperone’ activity may participate as well. 

mRNA stability 
Kushner and colleagues [64’,65] looked for temperature 
sensitive mutants with changes in mRNA decay; one 
mutation that had a profound effect on mRNA decay, par- 
ticularly in the context of mutations in other known 
nucleases, has proven to be an allele offtsH. In addition, 
the classic hfLB29 allele off&H, which is not conditionally 
lethal, ha.s the mRNA decay phenotypes at all tempera- 
tures. Therefore, defects in ftsH lead to defects in mRNA 
decay, and this is independent of the essential role of 
FtsH [64’,65]. The best current explanation for these 
observations would be that some (direct or indirect) reg- 
ulator of mRNA decay is subject to FtsH-dependent 
degradation, and lack of degradation of the protein 
inhibits mRNA decay. 

Unstable proteins in search of a protease 
In some cases, proteins that are of interest have been 
shown to be unstable, such as lambda cI1 [66]. Because we 
now know there are a limited number of energy-depen- 
dent proteases, it is feasible to look at the degradation of a 
protein of interest in representative protease mutant hosts. 
For lambda Xis, recognized as an unstable protein in 1971 
[67], the two overlapping proteases responsible have just 
recently been identified as FtsH and Lon [68]. Such a 
search of known proteases has also proven productive in 
studies in Ca~~o~a~~er (see below). 

Bacterial development and proteolysis 
Developmental pathways, with their requirements for 
timed expression of proteins at one stage but not another, 
are prime cases where one might expect regulated proteol- 
ysis to be particularly important. Recent studies in 
B. suhilis and Cadobacter, summarized below, support this 
idea. Although the importance of degradation of specific 
substrates is apparent from these studies, it is more diffi- 
cult to determine if proteolysis is the prime mechanism for 
throwing critical switches during development or serves as 
a locking mechanism to prevent reversal of switches 
thrown by other levels of regulation. 

i3. su&Wis 
B. s&%s can grow vegetatively, develop competence 
under some starvation conditions, and, under more 
extreme conditions, sporulate. The energy-dependent 
proteases seem to operate in all of these pathways. 
Development of competence in 3. sub&% requires a pos- 
itive regulator of transcription of competence genes, 
ComK. ComK activates its own transcription as well as 
expression of downstream competence genes. If the cell 
is to avoid initiating the autoregulation of ComK, the 
level and/or activity of ComK need to be tightly regulat- 
ed. ‘Iwo proteins, MecA and ClpC (an ATPase with 
homology to ClpA), as well as ClpP, seem to participate 
in this process. in vitro, MecA and ClpC together bind 
ComK and may thus block its ability to autoregulate. 
Corns, the small protein that appears to mediate envi- 
ronmental signaling for competence development, 
overcomes this binding, possibly competing for MecA 
and ClpC and releasing active ComK [69]. Degradation 
of the bound ComK also contributes to down-regulating 
ComK activity; when Corns releases ComK, Corns itself 
becomes sensitive to degradation by the Clp protease 
[70’]. The probable multiple roles for CIpP and ClpC are 
demonstrated by the puzzling genetics of this system. 
clpP mutants do not have the phenotype of mecA or clpC 
mutants (constitutive ComK synthesis); in fact, they fail 
to make ComK [59”]. High levels of MecA accumulat- 
ing in the c&P mutant may be part of the explanation; 
C.&P mecA double mutants partially suppress the dpP 
phenotypes [59”]. 

Null mutations in f&H in B. s&l&, like dpP mutations, 
block sporulation at a very early stage [27’]. A second role 
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late in sporulation has been inferred from the isolation of 
mutations in ftsH' as suppressors of an allele of spoVM. 
spoVM encodes a 26 amino acid polypeptide; null muta- 
tions in the gene are defective in spore formation [71]. 
Because the ftsH alleles do not suppress null mutations in 
spoVA4, it seems possible the mutant allele (which 
encodes a fusion protein) is unstable and degraded by 
FtsH, rather than that FtsH plays a normal role at this 
stage of sporulation. It is intriguing, however, that, in 
vitro, the SpoVM peptide but not a mutant form is 
degraded by FtsH and can inhibit FtsH, not unlike the 
inhibition of FtsH by the small lambda ~111 polypeptide, 
a part of the cII-dependent lysogenic switch mechanism 
[72]. If the only function of SpoVM, however, was to 
inhibit FtsH, thefisH mutants would be expected to sup- 
press a null spoVM mutation, which they did not [71]. 

Caulobacter 
CtrA is a central regulator of development of cell type in 
Cadobacter crescentq and acts as a timer for cell division 
as well. It is unstable at a particular stage of the cell 
cycle, and mutations in the carboxyl terminus of the pro- 
tein, which stabilize the protein, perturb cell growth 
[37]. This observation suggests that the degradation of 
CtrA is critical for Cadobacter growth. Jenal and cowork- 
ers [73”] found that mutations in c/pX or c&P were lethal 
for Caulobacter and depleting either protein stabilizes 
CtrA; whether this is the only target of these proteases is 
not yet known. !$till to be examined is the basis for the 
regulated proteolysis of CtrA during only one part of the 
growth cycle; the proteases are known to be present at all 
times. Lon protease also is critical for cell cycle control in 
this organism, degrading CcrM, an adenine DNA 
methyltrasferase necessary for proper timing of DNA 
replication [74]. 

A number of other proteins are subject to periodic proteol- 
ysis in Caulobacte,r, including the cell division protein FtsZ. 
In this case, it seems likely that regulated degradation is 
secondary to regulated assembly of the protein into active 
complexes (only the free protein is degraded) [75’]. 

Conclusions 
The energy-dependent Lon, Clp, and FtsH families of 
proteases were originally defined in E. co&, but it has now 
become evident that they are widespread throughout 
prokaryotes and also play critical roles in eukaryotic 
organelles. With functions both as proteases and in some 
cases, as chaperones, they have been found to act as mod- 
ulators in many regulatory circuits. Mutations in Clp 
components are defective in virulence in bacterial 
pathogens [60], and a Clp-like protein in humans has 
been implicated in an inherited torsion dystonia [76]. In 
the past year, the involvement of ATP-dependent pro- 
teases as direct participants in regulatory circuits, 
particularly for microorganisms with developmental path- 
ways, has provided new insight into ways in which 
proteolysis can act in regulation. 
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