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Anti-sigma factors 
John D Helmann 

Anti-o factors modulate the expression of numerous regulons 

controlled by alternative 0 factors. Anti-a factors are themselves 

regulated by either secretion from the cell (i.e. FlgM export 

through the hook-basal body), sequestration by an anti-anti-o 

(i.e. phosphorylation regulated partner-switching modules), or 

interaction with extracytoplasmic proteins or small molecule 

effecters (i.e. transrnembrane regulators of extracytoplasmic 

function rs factors). Recent highlights include the genetic 

description of the opposed o/anti-o binding surfaces; the 

unexpected role of FlgM in holoenzyme destabilization and the 

finding that folding of FlgM is coupled to 028 binding; the first 

structure determination for an anti-o antagonist; and the 

detailed dissection of two complex partner-switching modules 

in Bacillus subtilis. 
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Abbreviations 
AA SpollAA 
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ECF extracytoplasmic function 

Introduction 
Promoter recognition in bacteria requires that RNA poly- 
merase core enzyme @Q’cQ) associates with a sigma (6) 
subunit to form a holoenzyme [1,2]. Most bacteria contain 
multiple CJ factors, including both a primary (3 factor, control- 
ling essential housekeeping functions, and alternative (T 
factors, activated by specific signals or stress conditions. 
Most rs factors (the 07’J family) are related in sequence and 
presumably in structure. The exceptions are members of 
the 054 family, often controlling aspects of nitrogen metabo- 
lism, which are structurally and functionally distinct. 
Genome sequencing has revealed that the numbers of (r 
subunits vary greatly between different bacteria: 
Mycoplasmn genittzlium contains a single CY factor, whereas 
most other bacterial genomes encode at least three. The 
proliferation of d factor paralogs is particularly noteworthy in 
the Gram-positi\:e lineage including 17 in Badus subtilis 
and 13 in Mycobacm-hm tuberculosis. Several of these are asso- 
ciated with known or suspected anti-o factors. 

Alternative (3 factors are regulated at the transcriptional, 
translational, and post-translational levels. One common 
mechanism is the reversible interaction of r~ and a protein 
inhibitor, designated an anti-o (reviewed in [3’]). Anti-o fac- 
tors figure prominently in regulons controlled by 028 (i.e. 
flagellar biosynthesis), extracytoplasmic function (ECF) CT 
factors, and B. szlbtil’as OF (i.e. early sporulation) and & (i.e. 

general stress response). In this review, I summarize 
progress in the characterization of these and related systems, 
with an emphasis on results reported in 1997 and 1998. 

Regulators interacting with Escherichia co/i 070 
The first demonstration of an inhibitor protein binding 
to (3 emerged from studies of RNA polymerase modifica- 
tion during phage T4 infection (reviewed in [4]). This 
anti-o factor, AsiA, associates tightly with E. coli 070 and 
inhibits transcription from both host promoters and early, 
o70-dependent phage promoters. Because T4 late tran- 
scription depends on a phage-encoded alternative r~ 
(o~P”~), it initially appeared that AsiA might function in 

0 switching. The story, however, is not this simple, 
because AsiA is also required for the activation of phage 
middle genes, which depend on 07~ together with the 
phage-encoded h4otA protein [.5,6]. 

Recent biochemical analyses have clarified this mechanism. 
The small 10.6 kDa AsiA protein binds in a 1:l complex 
with the carboxy-terminal 63 amino acids (conserved region 
4) of 070 and thereby blocks recognition of the -35 promot- 
er region [7’,8”]. AsiA modified holoenzyme recognizes 
middle phage promoters containing bound MotA and lack- 
ing a -35 recognition region [5,6,9,10’]. It is not yet known 
whether AsiA also binds to MotA, and whether this interac- 
tion is important for middle gene transcription. 

Together with previous studies, these results indicate 
that phage T4 has evolved the ability to recruit and mod- 
ify the host RNA polymerase for the transcription of both 
early and middle phage genes, prior to the eventual 
c@5-dependent activation of late genes. In the first 
stage of infection, T4 ADP-ribosylates the RNA poly- 
merase a subunits which greatly reduces transcription 
from strong host promoters that require an upstream (UP) 
element for optimal activity (cited in [7’]). This increas- 
es the pool of RNA polymerase available to transcribe 
phage early genes. In the second step, AsiA selectively 
inhibits transcription from other o70-dependent promot- 
ers by blocking recognition of the -35 element. 

Remarkably, a variant of this mechanism may also function 
in uninfected E. coLi. Biochemical fractionation of o7o-asso- 
ciated proteins from stationary phase cells identified a 
single, specifically associated polypeptide designated Rsd 
[ 11’1. Rsd binds to region 4 of 070 and appears to block asso- 
ciation with RNA polymerase core enzyme. The effects of 
Rsd on in a&o transcription are modest and appear to be 
promoter specific, with a maximum observed inhibition of 
four fold. Since the levels of Rsd in v&,>o are only sufficient 
to complex 20% of 0 ‘O, the role of this protein is not imme- 
diately obvious. Ongoing generic analyses of rsd mutants 
will be needed to establish the role of Rsd in vjwo. 
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Figure 1 
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Regulation of late flagellar genes by export of the FlgM anti-o. FlgM 

(square) inhibits the activity of’o*s either by binding to free cr*s or by 

inducing dissociation of the o 2s holoenzyme [21”*]. When bound to 

o*s, FlgM adopts a partially folded structure (diamond). Once the hook 
and basal body structure is complete, FlgM can be exported from the 

cell by the flagellar export machinery 114-l 6). FlgM passes through 

the hollow inner core of the basal-body, hook, and flagellar filament 
structures [la). Once o*s transcription commences, flagellin becomes 

a competing substrate for this export channel and FlgM levels in the 
cell again begin to rise. 

FlgM and the regulation of flagellar 
gene expression 
One of the most dramatic examples of anti-o factor reg- 
ulation emerged from analyses of flagellar biogenesis in 
SahoneLa typRimuri2lm. The synthesis of late flagellar 
genes (encoding flagellin and chemotaxis functions) 
depends on an alternative (J factor of the 02s subfamily 
(reviewed in [lZ]). During the early stages of flagellar 
biogenesis, oz8 is held inactive by tight association with 
FlgM [13]. Once the hook and basal body is assembled, 
FlgM is secreted by the flagellar export system thereby 
freeing active 028 [14-161 (Figure 1). 

The mechanisms acting to couple secretion of FlgM to 
completion of the hook-basal body structure are complex. 
Genetic studies implicate two proteins, FhlB and RflH, as 
molecular ‘gatekeepers’ that act to sense, by an as yet 
unknown mechanism, the completion of the hook [17’]. 
Even after the hook is complete and FlgM export com- 
mences, the FliD, FliS, and FliT proteins still partially 
inhibit export, and thereby prevent the complete dere- 
pression of &-dependent flagellar late genes. Finally,JgE 
(encoding hook protein) missense mutations have been 

identified that leads to conditional (ionic strength sensi- 
tive) FlgM secretion [18], which further supports the 
notion that secretion of flagellar proteins occurs through 
the hollow channel inside the hook and flagellar filament. 

Significantly, high resolution NMR experiments have 
established that FlgM is largely unfolded in solution [ 19”] 
with, at best, transient helical elements [ZO’]. Upon inter- 
action with &a, the carboxy-terminal region of FIgM 
becomes ordered [19”]. It is postulated that this unfolded 
state may facilitate the passage of FlgM through the nar- 
row channel of the hook-basal body structure. 

The mechanism by which FlgM inhibits the activity of the 
02s RNA polymerase involves both the sequestration of 02s 
and the destabilization of existing 02~ holoenzyme [Zl”]. 
Using surface plasmon resonance, the equilibrium dissocia- 
tion constant of 02s and FlgM has been estimated at 
-2 x lo-10 M [Z lo’]. For unknown reasons, this value is much 
lower than that inferred from NMR analyses [19”]. Genetic 
experiments suggest that multiple sites of 028, involving por- 
tions of both regions 2 and 4, bind to FlgM [Zl”]. 

02~ homologs are widely, but not universally, present in fla- 
gellated bacteria [12], and many of these systems contain 
FlgM. Although the details differ substantially, f&M is 
under complex control often including a &-dependent 
promoter that provides an auto-repressing circuitry. In S. 
~phimzdrium, f1gM is also regulated at the translational level 
by Flk, which acts as a checkpoint for flagellar ring assem- 
bly [Z&23]. Thus, the mechanisms of morphogenetic 
coupling that coordinate flagellar assembly include the 
control of FlgM synthesis (by Flk) in addition to the pre- 
viously mentioned hook assembly checkpoint that controls 
FlgM export. In B. subtilis, f/gM is downstream of a compe- 
tence operon [24]. As a result, JgM is expressed under 
partial control of the ComK transcription factor and this, in 
part, accounts for the mutually antagonistic expression of 
the motility and competence regulons. 

.Regulation of anti-a factors by 
partner-switching modules 
The B. subtilis crF and & regulons are both modulated by 
partner-switching modules involving the mutually exclu- 
sive binding of an anti-o to either of two partners: the 
corresponding CY or an anti-anti-o [ZS]. Although CJF func- 
tions early during sporulation [26] and on regulates a 
complex stress response [27], both these cs factors and 
their regulators are paralogs. 

Regulation of d activity during sporulation 
Prior to sporulation-specific septation, @ is held in an 
inactive complex with its corresponding anti-o (SpoIIAB; 
AB for short) via contacts to three conserved CJ factor 
regions: 2.1, 3.1 and 4.1 [ZS]. Active crF is released when 
AB instead complexes with the antagonist (anti-anti-o) 
protein SpoIIAA (AA). In work reviewed elsewhere [26], it 
was established that the binding of AA to AB is stabilized 
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by ADP, whereas the ABeoF complex is stabilized by ATP. 
In addition, AB acts as a protein kinase to phosphorylate 
AA, Phosphorylation inactivates AA thereby allowing AB 
to inhibit OF. On.ce the sporulation septum forms, AA is 
dephosphorylatecl by the membrane-bound SpoIIE phos- 
phatase. This allows AA to bind AB and is a key event in 
the release of active CJF in the forespore. 

Recent studies provide a more detailed picture of this part- 
ner-switching module and support an induced release 
mechanism for ~1; activation (Figure 2). First, kinetic stud- 
ies have shown that phosphorylation of AA by AB is very 
slow (0.005 set-1 [29”,30’]). Once phosphotransfer occurs, 
AA-P dissociates at a relatively rapid rate (0.017 set-l) but 
the remaining AB*ADP complex, designated AB”, is only 
slowly recycled (0.0002 set-1; a one hour half-life!) [30’]. 
This kinetic bottleneck may correspond to the accumula- 
tion of stable AA*AB+ADP complexes [31”]. 

Unexpectedly, studies of AB mutants altered near the 
ATP-binding domain indicate that kinase activity is need- 
ed during the process of AA-mediated release of CJF 
(Figure 2). In this induced release model [31”,32], AA is 
phosphorylated directly by the AB~ATPwF ternary com- 
plex, leading to an unstable AB*ADP*oF complex that 
dissociates to liberate OF and AB*ADl? The AB*ADP is 
ultimately trapped in a long-lived complex with AA. 
Interestingly, genetic experiments have revealed that cer- 
tain missense mutations in the amino-terminal region of 
AB specifically impair binding to AA, whereas alanine sub- 
stitutions at the same positions affect binding to both AA 
and OF [33’]. This suggests that the binding surface used 
by AB to bind AA overlaps with that used to bind OF. 

Further work will be needed to sort out the remaining 
details in this mechanism. Specifically, a direct comparison 
of the slow rate of AA phosphorylation by AB*ATP with that 
of the AB*ATP*oF ternary complex is needed. In addition, 
AB is a dimer [34], but AA and CJF are not. Thus, one can 
imagine that two AA molecules are needed to fully dis- 
charge CJF from an AB,*ZATP%?oF complex (Figure 2). The 
resulting AB,*2ADP complex can either undergo ADP/ATP 
exchange reactions and rebind oF, or bind another two AA 
monomers to form the ‘dead-end’ AB,*ZAA*ZADP com- 
plex. Inspection of this pathway suggests that inactivation of 
the dimeric anti-o, AB,, requires net consumption of four 
unphosphorylated AA monomers. Therefore, activation of 
GF may be highly cooperative with respect to the concentra- 
tion of unphosphorylated AA generated by SpoIIE. 

Recent inroads have also been made into the structural 
analysis of these regulatory components. NMR spectroscopy 
has allowed the three-dimensional structure of AA to be visu- 
alized [35”]. This small protein contains a four-stranded p 
sheet flanked by four a helices. This structural information, 
together with genetic data on AA and AB mutant proteins, 
provides a prelirninary glimpse of the likely interaction sur- 
faces (e.g. [33-l). Further structural analyses of AA, and other 

Figure 2 

Regulation of early forespore gene expression by the SpollAB anti-o. In 
the predivisional cell, oF is held in an inactive complex with the dimeric 
SpollAB (AB; rectangle) anti-a and ATP (261. The anti-anti-o, SpollAA 
(AA), is presumably phosphorylated and therefore inactive. As 
sporulation proceeds, the SpollE phosphatase triggers a rise in 
unphosphotylated AA levels and the resulting AA binds to the 
AB*ATP*oF complex to induce the release of active oF [32]. This 
induced release reaction requires the kinase activity of AB, suggesting 
that AA phosphorylation and aF release are coupled events [31**1. AB 
is subsequently trapped as a long-lived species containing ADP 
[29”,321. This is presumably an altered conformation of AB (AB*) 
[30*] and may also include AA (the AA*ADP*AB complex) [31”]. 

components of this and related systems, will allow the bio- 
chemical basis of partner switching to be elucidated. 

Regulation of the &-controlled stress responses 
Remarkably, the regulation of gB, controlling the expres- 
sion of more than 60 proteins in response to several 
stress conditions (reviewed in [27]), is even more com- 
plex than that described for CY~. Activation of the CSB 
regulon is governed by two, sequentially linked partner- 
switching modules [36,37]. The regulatory components 
are encoded in a large, complex operon containing sigB 
and seven regulator of sigma-B (rsb) genes (Figure 3). 
The output of the upstream module, which integrates 
environmental stress signals [38], is RsbT, which stimu- 
lates oB activity indirectly by activating the RsbU 
phosphatase of the downstream module. Interestingly, 
with the significant exception of RsbX (see below), there 
is correspondence between the genetic and functional 
order of these genes. 
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Figure 3 

rsbR rsbS rsbT rsbU r.sbV rsbW sig8 rsbX 

Upstream module 

Downstream module 
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Regulation of the & stress response by two 
coupled partner-switching modules. The Bach 
subtilis sigB gene is co-transcribed with seven 
regulatory genes from a &dependent promoter 
(PA). Genes that positively affect oB activity (and 
s&S itself) are shaded grey, whereas negative 
regulators are white. The downstream portion of 
the operon, which can also be expressed from a 
&dependent ~oregu~to~ promoter (P& 
encodes the downstream partner-switching 
module [36,371. The RsbW protein (W) 
functions as an anti-o and binds to either 06 or 
to RsbV &). W also functions as a protein 
kinase and phosphorylates V. This reaction is 
postulated to sense the energy status of the cell: 
when ATP levels drop, W will become 
sequestered by V and the oB regulon will be 
induced [38,3*]. The upstream module 
(proteins R, S, and T) controls the activity of the 
U phosphatase, which can regenerate active V 
protein [36,371. T is an allosteric activator of U 
and also has protein kinase activity targeted 
against its antagonist S [41 *I. Active S, in turn, 
can be regenerated by X, which serves to 
downregulate signals from the upstream 
module 1401. 

Recent genetic and biochemical analyses have con- 
firmed and extended the essential features of the dual 
partner-switching model [36,37]. Genetic analyses of 
&X mutants, and their suppressors, confirm that this 
gene encodes a negative regulator of ~$2 that acts 
upstream of RsbU and RsbT but that is not required for 
the response to at least some stresses [39’,40]. As origi- 
nally proposed 1371, RsbX appears to act as a homeostatic 
feedback signal that functions to downregulate gB. 
Thus, signals that liberate active bB from its anti-o 
(RsbW) also lead to increased transcription of the genes 
for the downstream module from an internal, autoregula- 
tory promoter. This up-regulation of crB levels may 
initially magnify the response, but the concomitant up- 
regulation of RsbX will act to reduce the signal 
generated by the upstream module. Specifically, RsbX 
dephosphorylates RsbS that thereby sequesters RsbT 
preventing activation of the RsbU phosphatase. 
Intriguingly, mutational studies of RsbT reveal that 
kinase activity is not essential for stimulation of RsbU, 
but is required for the transmission of stress signals to 
the downstream module [41’]. 

Recent analyses have also shed light on the heretofore mys- 
terious RsbR protein [42’]. RsbR appears to act as a 
modulator of RsbS activity in the upstream module and 
represents a new branch in this signal transduction cascade. 

Anti-c factors that regulate ECF CT factors 
ECF CJ factors [43] are a large and growing subfamily of 0 fac- 
tors that typically regulate functions related, in the broadest 
sense, to the cell envelope (see [44] for a recent review). 
Typically, the genes encoding ECF (J factors are positively 

autoregulated and are transcriptionally coupled to the 
expression of a cognate anti-cr factor. In E. co& ECF (T factors 
include &=I, an activator of ferric citrate transport (reviewed 
in [45*]), and (TE, a mediator of a periplasmic stress response. 
ECF (S factors are also well represented in other bacteria with 
seven in A. subtilis and 10 in M. tuberculosis. 

Most ECF CT factors are regulated by anti-o factors. In the 
absence of an external signal, the CT is held in an inactive, 
stoichiometric complex with an anti-o, often located in 
the cytoplasmic membrane. By virtue of its transmem- 
brane disposition, the anti-o is poised to activate a 
transcriptional response signaled by the presence of mol- 
ecules external to the cytoplasm&z membrane. Systems 
regulated in this manner include various stress responses, 
uptake systems for ferri-siderophore complexes, 
carotenoid biosynthesis in response to light, and synthe- 
sis of the exopolysaccharide alginate 1441. 

Several recent studies have investigated the topological 
arrangement of anti-o factors in the cytoplasmic mem- 
brane as well as their interactions with regulatory ligands. 
In E. coli, ferric citrate transport requires crFecr, which is 
regulated by FecR. Although initially thought to function 
as an anti-o, some results suggest that FecR may be 
required to activate crFecl [45’]. FecR appears to have a 
single membrane spanning segment with a cytoplasmic 
amino-terminal domain and a periplasmic carboxy-termi- 
nai domain 1461. Activation of FecR requires that the 
periplasmic domain interacts with the amino-terminal 
domain of the outer-membrane FecA transporter [47’]. In 
B. subt~Z~s, C+ is aiso regulated by an anti+ factor 148,491. 
Despite the report that this (5 activates a @ecr-dependent 
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gene in E. co& [48], in 8. subtills ox modulates cell wall 
structure and does not control iron transport [SO]. The B. 
5~~~~~~s &+’ regulon is also regulated by an anti-cr that sens- 
es perturbations ‘of cell wall structure (JD Helmann, 
unpublished data). 

Arri-ECF o flicro~ respond co a wide variety of s&u& 
transmitted either by other proteins or by small molecules. 
In the case of E. LX& GE, release from the transmembrane 
anti-o (RseA) requires signals perceived in the periplasm 
that may be modulated bq’ RseB and RseC [51*,X*}. In a 
CICDS&,Y reiateb ywiem T~~&kng aY&natf: s~~&on in 
~se~~o~o#as aerqkosa, a & homolog (022) is regulated by 
an anti-0 MucA. MucA contains a single transmembrane 
domain and interacts with the periplasmic Mu& protein 
[53]. Not aitl ECF ‘0 factors are controlled by signals exter- 
nal to the cell: the 8. co&olor gR regulon is induced by 
oxidants perceived by the redox activity of a cytoplasmic 
anti-c factor (cited in [54’]). 

Conclusions 
Genomic analyses highlight the widespread occurrence of 
bcth alcernaciue CT Eactocs and anti-cr &ccors as cegulators 
of gene expression. The systems reviewed range from the 
relatively simple, the secretion of the anti-@ FlgM as a 
mechanism to sense the completion of the flageliar 
hcodnlr>as& 'DD~,Y SX~XXW& ‘so -$ne ‘>ncreti+Y d>d~D~Iate 

signal transduction cascade ulrimately regulating the 
RsbS an&c~ factor. The mecZlanisms bj? whic’n anti-b 
factors exerr their effects are still an active area of study, 
but seem to involve both sequestration and holoenzyme 
dissociation. To date, the pathways serving to control 
arri-cr acrivicv can be broadly grouped into three care- 
gcries: expm i%~m the cell (i.e. FlgM{> yammer-switching 
modules as found in the gF and 6 regulons, and interac- 
tkn wirh sma’t’ mokcB\e 01 proxh ‘tjgaf&s as Sound j, 

systems reguiated by ECF d factors. 
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